Magnetic charge and the magnetoelectricity in hexagonal manganites $RMnO_3$ and ferrites $RFeO_3$

Meng Ye^{*} and David Vanderbilt

Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019, USA

The magnetoelectric (ME) effect is the phenomenon in which polarization \mathbf{P} is induced by a magnetic field \mathbf{H} or magnetization \mathbf{M} is induced by an electric field $\boldsymbol{\mathcal{E}}$. The ME coupling (MEC) between magnetic and electric properties has motivated intense experimental and theoretical investigations in bulk single crystals, thin films, composite layers and organic-inorganic hybrid materials in recent years[1].

The linear ME effect α is defined as

$$\alpha_{\beta\nu} = \frac{\partial P_{\beta}}{\partial H_{\nu}} \Big|_{\boldsymbol{\mathcal{E}}} = \mu_0 \frac{\partial M_{\nu}}{\partial \mathcal{E}_{\beta}} \Big|_{\mathbf{H}}, \qquad (1)$$

where indices β and ν denote the Cartesian directions and μ_0 is the vacuum permeability. From a theoretical point of view, the linear ME effect can be decomposed into electronic (frozen-ion), ionic (lattice-mediated), and strain-mediated responses [2]. Each term can be further subdivided into spin and orbital contributions based on the origin of the induced magnetization. As the orbital moment is largely quenched on transition-metal sites, most phenomenological and first-principles studies focus on the spin-electronic [6] and the spin-lattice [3, 4] contributions. Following [5], the latter can be written as

$$\alpha^{\text{latt}} \propto Z^{\text{e}} \cdot K^{-1} \cdot Z^{\text{m}} \,, \tag{2}$$

i.e., as a matrix product of the dynamical Born electric charge Z^{e} , the inverse force-constant matrix K^{-1} , and the dynamical magnetic charge Z^{m} ,

$$Z_{m\nu}^{\rm m} = \Omega_0 \frac{\partial M_{\nu}}{\partial u_m} \Big|_{\mathcal{E},\mathbf{H},\eta} = \mu_0^{-1} \frac{\partial F_m}{\partial H_{\nu}} \Big|_{\mathcal{E},\eta}, \qquad (3)$$

which is the magnetic analog of the Born charge. Here m is a composite labels for atom and displacement direction, u_m is the internal displacement, F_m is the atomic force, Ω_0 is the unit cell volume and η is a homogeneous strain. Our previous first-principles study has shown that exchange striction acting on noncollinear spin structures induces much larger magnetic charges than when Z^m is driven by spin-orbit coupling (SOC), providing a promising mechanism for large MECs [7].

The hexagonal manganites $RMnO_3$ and ferrites $RFeO_3$ (R=Sc, Y, In, Ho-Lu) shown in Fig. 1 exhibit strong couplings between electric, magnetic and structural degrees of freedom. The transition-metal ions in the basal plane are antiferromagnetically coupled through superexchange so as to form a 120° spin arrangement. There are two types of magnetic orders in Mn^{3+} that allow a linear MEC to be present, the A₁ phase (P6₃cm) and the

FIG. 1. Structure of ferroelectric hexagonal $RMnO_3$ and $RFeO_3$.

FIG. 2. The magnetic phases of hexagonal $RMnO_3$ and $RFeO_3$. (a) The A_2 phase has spins on the two Mn^{3+} layers pointing outward (inward) as a magnetic monopole. (b) The A_1 phase has the Mn^{3+} spins pointing in the tangential direction, forming a magnetic vortex pattern. The A_1 and A_2 phases only differ by a 90° global rotation of the spins.

 A_2 phase (P6₃c'm'), shown in Fig. 2. In this work, we use first-principles density functional methods to study the transverse magnetic charges, and the spin-lattice and spin-electronic MECs, in hexagonal HoMnO₃, ErMnO₃, YbMnO₃, LuMnO₃ and LuFeO₃, in the A₁ and A₂ phases, clarifying the conditions under which exchange striction leads to enhanced magnetic charges and anomalously large in-plane spin-lattice ME effects.

As the spins are non-collinearly aligned in the basal plane, the transverse magnetic charges are driven by both SOC and exchange striction. As the exchange-striction strength can exceed the SOC by orders of magnitude in some materials, it is worthwhile to understand the effect of SOC, compared with exchange striction, in $RMnO_3$ and $RFeO_3$. In Table I, we present a selection of our results on the transverse magnetic charges induced with

TABLE I. Transverse magnetic charge components $Z^{\rm m}$ $(10^{-2}\mu_{\rm B}/{\rm \AA})$, without SOC and total including SOC, for ErMnO₃ in the A₂ phase and HoMnO₃ in the A₁ phase.

	A ₂ phase ErMnO ₂			A ₁ phase HoMnO ₂	
	No SOC	Total		No SOC	Total
$Z_{xx}^{\mathrm{m}}(\mathrm{R}_1)$	-21.74	-21.02	$Z_{yx}^{m} Ho_1$	-27.83	-24.45
$Z_{xx}^{\mathrm{m}}(\mathrm{R}_2)$	2.98	5.85	Z_{xx}^{m} Ho ₂	-18.14	-14.70
$Z_{yx}^{\mathrm{m}}(\mathrm{R}_2)$	11.96	11.27	$Z_{yx}^{\mathrm{m}}\mathrm{Ho}_2$	2.87	-0.81
$Z_{xx}^{\mathrm{m}}(\mathrm{Mn})$	-9.79	-6.92	Z_{yx}^{m} Mn	53.47	92.07
$Z_{zx}^{m}(Mn)$	-21.79	-38.43	Z_{xy}^{m} Mn	1.80	-9.79
$Z_{yy}^{\rm m}({\rm Mn})$	32.36	-7.35	Z_{zy}^{m} Mn	47.72	41.08
$Z_{xx}^{\tilde{\mathrm{m}}}(\mathrm{O}_{\mathrm{T}1})$	6.07	5.84	$Z_{ux}^{m}O_{T1}$	27.64	22.46
$Z_{zx}^{\mathrm{m}}(\mathrm{O}_{\mathrm{T}1})$	154.04	149.71	$Z_{xy}^{m}O_{T1}$	-6.86	-7.34
$Z_{yy}^{\mathrm{m}}(\mathrm{O}_{\mathrm{T}1})$	21.72	21.49	$Z_{zy}^{m}O_{T1}$	-229.85	-187.73
$Z_{xx}^{\mathrm{m}}(\mathrm{O}_{\mathrm{T}2})$	18.45	15.80	$Z_{yx}^{m}O_{T2}$	-66.85	-57.11
$Z_{zx}^{\mathrm{m}}(\mathrm{O_{T2}})$	160.49	139.70	$Z_{xy}^{m}O_{T2}$	-25.70	-19.56
$Z_{yy}^{\mathrm{m}}(\mathrm{O}_{\mathrm{T2}})$	-46.09	-47.67	$Z_{zy}^{\tilde{m}}O_{T2}$	-231.43	-192.11
$Z_{xx}^{\mathrm{m}}(\mathrm{O}_{\mathrm{P1}})$	-421.57	-391.56	$Z_{yx}^{m}O_{P1}$	-551.22	-483.14
$Z_{xx}^{\mathrm{m}}(\mathrm{O}_{\mathrm{P2}})$	201.65	214.54	$Z_{xx}^{m}O_{P2}$	461.15	394.63
$Z_{yx}^{\mathrm{m}}(\mathrm{O}_{\mathrm{P2}})$	-354.57	-334.71	$Z_{yx}^{\mathrm{m}}\mathrm{O}_{\mathrm{P2}}$	252.87	183.98

and without SOC, focusing on $ErMnO_3$ in the A_2 phase and $HoMnO_3$ in the A_1 phase. It is obvious that the SOC contributions are an order of magnitude smaller for many transverse components.

We then calculate the spin-lattice MEC from Eq. (2) using our computed Born charges, force-constant matrices and magnetic charges. The spin-electronic MECs are calculated using the definition in Eq. (1) with the lattice degrees of freedom frozen. In Fig. 3, we show the transverse MECs α_{xx} for RMnO₃ and LuFeO₃ in the A₂ phase. In Fig. 3(a), the spin-lattice ME response is one order of magnitude stronger than the SOC induced ME

FIG. 3. The spin-lattice, spin-electronic and the total spin ME constants α_{xx} of RMnO₃ and LuFeO₃ in the A₂ phase.

TABLE II. Transverse ME constants α_{xy} (in ps/m) without SOC, and total including SOC, for the A₁ phase HoMnO₃.

	No SOC	Total
Spin-lattice	-4.88	-9.55
Spin-electronic	-5.35	-5.24
Total spin	-10.23	-14.79

in Cr_2O_3 [8], as a result of the exchange-striction mechanism. Surprisingly, the effect of SOC on the spin-lattice MECs is comparable to the effect of exchange striction, although the SOC acts only as a perturbation to most of the Z^{m} . The underlying reason is that the spin-lattice MEC is smaller than expected as a result of a large degree of cancellation between the contributions from different infrared-active modes. Thus, small perturbations to the magnetic charges can lead to large relative changes in the MEC result. From Fig. 3(b) it can be seen that the spin-electronic contribution is not negligible, and it counteracts the ME effect from the spin-lattice channel in $RMnO_3$. The total transverse ME effect is summarized in Fig. 3(c). Because of the large SOC effect and the cancellation between the lattice and electronic contributions, the total spin MEC α_{xx} is ~ 1.2 ps/m in the A₂ phase. In LuFeO₃, the spin-lattice and the spin-electronic terms are all smaller than in $RMnO_3$. However, as the exchangestriction induced spin-lattice MEC term has the opposite sign compared to $RMnO_3$, the cancellation induced by the SOC perturbation and the spin-electronic contribution is avoided, so that $LuFeO_3$ has the largest total spin MEC of $\sim -3 \,\mathrm{ps/m}$ in the A₂ phase.

For the A₁ phase, we present the MECs for HoMnO₃ in Table II. Unlike the MECs in the A₂ phase RMnO₃, the spin-lattice, spin-electronic and SOC contributions all have the same sign. As each term contributes $\sim -5 \text{ ps/m}$, the spin-total MEC α_{xy} reaches to $\sim -15 \text{ ps/m}$, which is the largest in all of the RMnO₃ and LuMnO₃ materials we studied.

- * mengye@physics.rutgers.edu
- [1] M. Fiebig, J. Phys. D **38**, R123 (2005).
- [2] T. Birol, N. A. Benedek, H. Das, A. L. Wysocki, A. T. Mulder, B. M. Abbett, E. H. Smith, S. Ghosh, and C. J. Fennie, Curr. Opin. Solid State Mater. Sci. 16, 227 (2012).
- [3] J. C. Wojdel and J. Íñiguez, Phys. Rev. Lett. 103, 267205 (2009).
- [4] H. Das, A. L. Wysocki, Y. Geng, W. Wu and C. J. Fennie, Nat. Commun. 5, 2998 (2014)
- [5] J. Íñiguez, Phys. Rev. Lett. **101**, 117201 (2008).
- [6] E. Bousquet, N. A. Spaldin, and K. T. Delaney, Phys. Rev. Lett. 106, 107202 (2011).
- [7] M. Ye and D. Vanderbilt, Phys. Rev. B 89, 064301 (2014).
- [8] A. Malashevich, S. Coh, I. Souza and D. Vanderbilt, Phys. Rev. B 86, 094430 (2012).