Influence of vacancies on polarization and polarization switching from first-principles.

Aldo Raeliarijaona and Huaxiang Fu

Department of Physics, University of Arkansas, Fayetteville, AR 72701, USA

We investigate the influence of vacancies on polarization and polarization switching in ferroelectric BaTiO₃ using first-principles calculations. Our study demonstrates that BaTiO₃ with V_{Ti}^{2+} , V_{Ti}^{4-} and V_{Ba}^{2-} are insulators with nonzero electric polarization. Interestingly, we find that vacancy species have little effect on the polarization of BaTiO₃ as they produce polarizations comparable to that in perfect crystal. Furthermore, a new switching mechanism is proposed to reverse the polarization when vacancy is present. We show that the switching barrier in the presence of V_{O1}^{2+} is small with $\Delta E = 6$ meV per formula cell.