Layered variations of the ABO₃ perovskite structures have gained widespread interest of technological and fundamental importance in view of their inherent properties and functionalities [1–4]. Well-known homologous series of layered oxides based on slabs with (001) perovskite surfaces include Ruddlesden-Popper (RP; structural formula $\text{A}_{n+1}\text{B}_n\text{O}_{3n+1}$), Aurivillius and Dion-Jacobson compounds [3, 4]. Numerous fundamental investigations of their structural, electronic and dielectric properties have led to insights on how to design and tune functional behavior of these materials through strain and interface engineering. Utilizing first-principles-based computational techniques, we have already predicted intriguing behavior in layered-perovskite compounds of the RP type. Specifically, we showed that Goldstone-like states (collective, close to zero frequency excitations, requiring practically no consumption of energy) can be induced in a PbSr₂Ti₄O₉ RP superlattice as easy rotations of the in-plane polarization vector [5]. Furthermore, examination of an (as of now, fictitious) epitaxial Ba₂TiO₄ RP compound demonstrated that it exhibits an assortment of competing incommensurate distortions, including ones that promote polarization [6].

Here we focus on exploring the properties of the RP Ba₂ZrO₄ structure that displays a yet poorly understood tendency to absorb and desorb small molecules, such as water and CO₂ [1, 2, 7] (see Figure 1). Therefore, acquiring a greater insight into the physical underpinnings of the behavior of this compound can result in emergence of useful materials templates for the design of new functional-oxide membranes. This, in turn, will greatly reduce the high energy costs associated with the process of CO₂ capture and storage [8], thus contributing to the already substantial efforts aimed at developing more advanced technologies for the CO₂ sequestration.

We have employed a first-principles method based on density-functional theory (DFT) to investigate electronic, vibrational and dielectric properties of the RP Ba₂ZrO₄ structure, as well as its phase transformations under applied biaxial strain emulating epitaxial thin-film environment.

The phase space for the system can be separated into four main regions according to the values of $\eps_x = (a - a_0)/a_0$, where a_0 is the in-plane lattice parameter of the free standing Ba₂ZrO₄ structure with all the normal stress tensor components relaxed to small values: (I) high compressions of above 0.8–1.0%, dominated by incommensurate (IC) distortions; (II) moderate compressions and tensions, where the non-polar I4/mmm structure is stable; (III) intermediate tensions ranging from 0.5 to ~3.0%, dominated by combinations of antiferrodistortive (AFD) instabilities; (IV) high tensions of above 3.0–3.5%, with polar distortions being of similar or greater strength than the AFD ones. In comparison, the previously

![FIG. 1. Molecular intercalation between perovskite-oxide layers. (a) A RP A_2BO_4 structure with an empty interlayer gallery (space between the two AO layers) marked by a thick arrow. In-plane and out-of-plane lattice parameters a and c of the typical tetragonal unit cell are also shown. (b) Attachment sites for small molecules inside the interlayer gallery of the A_2BO_4 structure are indicated by ivory spheres. Notice the difference in layer stackings of the structures depicted in (a) and (b) due to a “layer slide” phase transition.](image-url)

![FIG. 2. Soft vibrational modes frequencies ω at Γ and various BZ-boundary q points as functions of epitaxial strain \eps_x for Ba₂ZrO₄.](image-url)
Static dielectric permittivity, $\varepsilon_{\alpha\alpha}$, was used. The plot clearly shows the divergence of the in-plane with IC distortions persisting throughout the whole interval of fourfold rotational symmetry) that allow for easy rotation of the considered epitaxial strains.

Remarkably, though, even after the transition into the polar phase on the boundary between regions I and II. The in-plane dielectric permittivity remains approximately the same throughout the region of all compressions and for tensions of less than 3.0% dielectric tensors are computed for the non-polar $I4/mmm$ configuration, while for larger tensions they are computed for the polar $Pmm2$ configuration (where $\varepsilon_{\alpha\alpha}^0$ and $\varepsilon_{\beta\beta}^0$ are no longer equal by symmetry). Connecting lines are used to guide the eye.

In Figure 3 we present the calculated in-plane and out-of-plane components of the static dielectric permittivity tensor $\varepsilon_{\alpha\beta}^0$, computed for the RP Ba_2ZrO_4 structure with respect to varying biaxial strain ε_s. For all compressions and for tensions of less than 3.0% dielectric tensors are computed for the non-polar $I4/mmm$ configuration, while for larger tensions they are computed for the polar $Pmm2$ configuration (where $\varepsilon_{\alpha\alpha}^0$ and $\varepsilon_{\beta\beta}^0$ are no longer equal by symmetry). Connecting lines are used to guide the eye.

The nature of this excitation in the RP Ba_2ZrO_4 structure — which, unlike the previously studied one, does not contain lead or other lone-pair active ions — is yet unclear and the work to elucidate its origins is currently underway.

FIG. 3. In- and out-of-plane components of the static dielectric permittivity tensor $\varepsilon_{\alpha\alpha}^0$, computed for the RP Ba_2ZrO_4 structure with respect to varying biaxial strain ε_s. For all compressions and for tensions of less than 3.0% dielectric tensors are computed for the non-polar $I4/mmm$ configuration, while for larger tensions they are computed for the polar $Pmm2$ configuration (where $\varepsilon_{\alpha\alpha}^0$ and $\varepsilon_{\beta\beta}^0$ are no longer equal by symmetry). Connecting lines are used to guide the eye.

FIG. 4. Energy landscape for the epitaxially strained at $\varepsilon_s = 3.5\%$ RP Ba_2ZrO_4 structure with frozen-in doubly degenerate FE_{xy} distortions (space group $Pmm2$). Q_x and Q_y are the amplitudes of the FE mode eigenvectors polarized along the x- and y-axes, respectively. The energy of the paraelectric $I4/mmm$ phase is taken as zero and a is the value of the in-plane lattice parameter.

*lydie.louis@uconn.edu