Quantum Monte Carlo calculations in solids with downfolded Hamiltonians
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A systematic downfolding many-body approach for extended systems is presented [1, 2]. Many-body calculations
operate on a simpler Hamiltonian which retains material-specific properties. The Hamiltonian is systematically
improvable and allows one to dial, in principle, between the simplest model and the original Hamiltonian. As a
by-product, pseudopotential (PSP) errors are essentially eliminated using a frozen-core (FC) treatment. The cost of
the calculation is dramatically reduced without sacrificing accuracy. We use the auxiliary-field quantum Monte Carlo
(AFQMC) method [3-7] to solve the downfolded Hamiltonian. This approach greatly extends the reach of general, ab
initio many-body calculations in materials. We illustrate the approach [1] by obtaining accurate equilibrium properties
in a range of solids, including semiconductors, ionic insulators, and metals. We then show that the present approach
can describe BN, with an accurate EOS extending to high pressures, without resorting to all-electron calculations [8].
Finally, the spin gap in strongly correlated NiO is accurately determined and compared with experiment.

The most fundamental issue in computations of electron correlation effects is accuracy. For QMC calculations,
the fermion sign problem must be controlled with an approximation. The AFQMC framework, by carrying out the
random walks in non-orthogonal Slater determinant space, has shown to lead to an approximation which is more
accurate and less dependent on the trial wave function (see Ref. 5 and references therein). Our approach treats
downfolded Hamiltonians expressed with respect to a truncated basis set of mean-field orbitals of the target system,
using AFQMC. The simplification, often with drastic reduction in computational cost, can extend the reach of ab
initio computations to more complex materials. A large gain in statistical accuracy often results as well, because of
the smaller range of energy scales (or many fewer degrees of freedom) which need to be sampled stochastically in the
downfolded Hamiltonian.
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FIG. 1: Left panel: Calculated equilibrium volumes (a) and bulk moduli (b), as relative errors from experiment. Selected
DFT results are also shown. Right panel: Pressure calibration and EOS in cubic BN. The main graph displays the calculated
pressure vs. volume at room-temperature, using the fitted experimental curve of Datchi et al. [8] (green diamond symbols) as
a pressure reference. Different symbols are from different experiments. The shading gives the overall statistical uncertainties.
The all-electron DMC results are from Ref. 8. The inset shows the T'= 0 K EOS near equilibrium from AFQMC. The calculated
equilibrium position is shown by the arrow. The vertical line indicates the experimental value.

The left panel in Figure 1 summarizes the calculated equilibrium properties and compares them with experiment.
Calculations for metallic becec Na and fece Al used twist averaging over 90 random k-points. He-core PSPs were used
for Na and Al, together with the FC treatment. This makes a major difference in both NaCl and Na. With a Ne-core
PSP, the equilibrium volume is underestimated by ~ 30% in Na, for example. The error is eliminated by the FC
approach, which allows the semi-core 2s and 2p electrons to fully relax in the target environment of the solid at the
DFT-level, before freezing them in the corresponding KS orbitals in the many-body calculation. In a more demanding
test, we apply downfolding AFQMC to obtain the EOS of cubic BN for pressures up to 900 GPa (V' ~ 0.5V,,).
This system has been identified as a promising material for an ultra-high pressure calibration scale [8]. A recent
DMC study stressed the need for all-electron (AE) calculations in order to obtain reliable results at high pressures
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FIG. 2: AFQMC spin gap in NiO and compari-

@f@gg@ B M son with experiment: thermodynamic measure-

— 100 -"1 | ments (TD; top line) and inelastic neutron scat-

2 —_ tering (INS; bottom line). Blue circles used av-

g 3 _ o e eraging over only two k-points and confirm con-

m” E 20 Ful 9@‘@ e vergence with respect to Npasis. Calculations av-

sor 2 el simeonsisen | ] eraging over a 4 x 4 x 4 k grid (red squares) are

L ol i used to obtain the final results. The inset illus-

0 w0 trates the much faster convergence enabled by

60— using a spin-consistent basis set [1] than using

the KS orbitals from the majority spin.

basis

[8]. The difficulty underscores the PSP transferability problem and is exacerbated by the need to apply a locality
approximation in DMC to treat non-local PSPs. The AE treatment would be difficult to realize for heavier atoms.
Our calculations freeze the 1s electrons in their KS orbitals in the supercell at each volume, using extremely hard
“zero-electron-core” PSPs for B and N in the downfolding procedure [1]. In most cases ~ 55 states/atom were used,
but larger Npagis calculations were done at selected volumes to extrapolate the EOS to the complete basis set limit.
As seen in the right panel Fig. 1, the calculated EOS at low pressures is in excellent agreement with experiments (see
Ref. 8). At high pressures, the two QMC results are in good agreement, providing a consistent ab initio pressure
calibration.

As a final application, we determine the spin gap between the ferromagnetic (FM) state and the antiferromagnetic
(AFM-II) ground state in NiO (Fig. 2). Understanding and predicting magnetic properties of transition-metal oxides
epitomizes the challenge of computations in quantum matter. NiO is a prototypical system for strong electron
correlations. Many-body calculations of the spin gap have been limited, and DFT-based methods have yielded widely
varying values [1]. We use Ne-core and He-core PSPs for Ni and O, respectively. The downfolded Hamiltonian treats
the Ni 3s, 3p, 3d, 4s and O 2s, 2p electrons. A rhombohedral supercell with a lattice constant of 4.17 A containing two
formula units is used. To reduce one-body finite-size effects, we used twist-averaging with a 4 x 4 x 4 k grid. (A recent
study [9] by full configuration-interaction QMC and coupled-cluster methods, with calculations at k = T', obtained
a gap value ~ 0.96eV.) One- and two-body finite-size corrections [10] are then applied to the many-body results
(two-body finite-size effects are greatly reduced by cancellation, because the two phases share the same supercell). In
the inset in Fig. 2, the variational gap value from the single-determinant trial wave functions is shown vs. the number
of basis functions, for both the spin-consistent basis set and one which uses truncated KS orbitals of the majority spin.
Both converge to the same infinite basis-set limit, as expected, but the former greatly accelerates convergence. Note
that the variational gap is actually negative, i.e., the trial wave functions identify the incorrect phase for the ground
state. The AFQMC calculations correctly recovers from these, and yield a final estimate of the gap of 116(3) meV, in
good agreement with experiments [1].

The downfolding approach can be generalized to carry out excited state and many-body band structure calculations,
which was recently formulated [11] in planewave AFQMC. A large number of applications are possible within the
present form. Further improvements, for example by using localized virtual states or optimizing the orbitals with
respect to the environments, will lead to even more general and powerful approaches.
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