Multiferroicity in Bulk and Thin-Film Hexagonal LuFeO$_3$

Steven Disseler1, Xuan Luo2, Yoon Seok Oh3, Rongwei Hu3, June Lau1, Rick Paul1, Jeffrey W. Lynn1, Sang-Wook Cheong2,3, Julie A. Borchers1, Charles M. Brooks4, Julia A. Mundy5, Jarrett A. Moyer6, D. A. Hillsberry7, E. L. Thies7, D. A. Tenne2, John Heron8, James D. Clarkson9, Gregory M. Stiehl9, Peter Schiffer9, David A. Muller5,10, Darrell G. Schlom4,10, William Ratcliff II1.

1NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
2Laboratory for Pohang Emergent Materials, Pohang University of Science and Technology, Pohang 790-784, Korea
3Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
4Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
5School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
6Department of Physics and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
7Department of Physics, Boise State University, Boise ID 83725
8Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA
9Department of Physics, Cornell University, Ithaca, New York 14853, USA
10Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA

The hexagonal manganites such as LuMnO$_3$ are prototypical examples of type-I multiferroics, where ferroelectricity stems from a structural distortion at high temperatures ($T_{FE} \sim 1000$ K) with antiferromagnetic order occurring only at a much lower temperature ($T_N \sim 100$K). The isostructural hexagonal LuFeO$_3$ is a promising candidate for enhancing many of the magnetic properties of this system, including the ordering temperature, as the isovalent Fe exhibits a larger spin relative to Mn as well as the potential for enhanced super-exchange interactions. Interest in this material has been bolstered by recent first-principles calculations predicting an enhanced ferromagnetic moment parallel to the ferroelectric moment as well as a mechanism for establishing robust magnetoelectric coupling1. However, detailed studies of this material have been lacking to date due in large part to the instability of the hexagonal phase of LuFeO$_3$ in bulk, which instead forms in the orthorhombically distorted perovskite structure. In light of this, we have performed an extensive study of this material in two forms: (1) pure hexagonal LuFeO$_3$ thin-films grown by molecular beam epitaxy, and (2) bulk polycrystalline and single crystals stabilized by Mn-substitution on the Fe-site. We use a variety of techniques in to study these samples including magnetometry, neutron scattering, Raman spectroscopy, STEM and PFM. Through these, we find that both films and bulk samples are ferroelectric at room temperature and order magnetically with an enhanced T_N relative to LuMnO$_3$. However, despite recent claims of room temperature magnetic order2, we find that the maximum intrinsic ordering temperature for hexagonal LuFeO$_3$ is only 150 K. A weak ferromagnetic moment is observed along the c-axis of thin-films and bulk samples that vanishes rapidly with increasing Mn concentration, consistent with theoretical predictions. Lastly, we will discuss how our determination of the magnetic phase diagram as a function of temperature and Mn concentration provide insight into microscopic models put forth to explain the various transition and spin-reorientations in this family of compounds.

Acknowledgements Work at Rutgers University was supported by the DOE under Grant No. DE-FG02-07ER46382, and at Cornell University through DMR 1120296, NSF IMR-0417392, and DE-SC0002334,
References